Identification of Nonlinearity in Conductivity Equation via Dirichlet-to-Neumann Map∗
نویسندگان
چکیده
We prove that the linear term and quadratic nonlinear term entering a nonlinear elliptic equation of divergence type can be uniquely identified by the Dirichlet to Neuman map. The unique identifiability is proved using the complex geometrical optics solutions and singular solutions. Mathematics subject classification (MSC2000): 35R30
منابع مشابه
Point Measurements for a Neumann-to-Dirichlet Map and the Calderón Problem in the Plane
This work considers properties of the Neumann-to-Dirichlet map for the conductivity equation under the assumption that the conductivity is identically one close to the boundary of the examined smooth, bounded, and simply connected domain. It is demonstrated that the socalled bisweep data, i.e., the (relative) potential differences between two boundary points when delta currents of opposite sign...
متن کاملOn a Characterization of the Kernel of the Dirichlet-to-neumann Map for a Planar Region
We will show that the Dirichlet-to-Neumann map Λ for the electrical conductivity equation on a simply connected plane region has an alternating property, which may be considered as a generalized maximum principle. Using this property, we will prove that the kernel, K, of Λ satisfies a set of inequalities of the form (−1) n(n+1) 2 detK(xi, yj) > 0. We will show that these inequalities imply Hopf...
متن کاملOn uniqueness in the inverse conductivity problem with local data
The inverse condictivity problem with many boundary measurements consists of recovery of conductivity coefficient a (principal part) of an elliptic equation in a domain Ω ⊂ R, n = 2, 3 from the Neumann data given for all Dirichlet data (Dirichlet-to-Neumann map). Calderon [5] proposed the idea of using complex exponential solutions to demonstrate uniqueness in the linearized inverse condictivit...
متن کاملAn efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions
In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...
متن کاملBoundary Determination of Conductivities and Riemannian Metrics via Local Dirichlet-to-Neumann Operator
We consider the inverse problem to identify an anisotropic conductivity from the Dirichlet-to-Neumann (DtN) map. We first find an explicit reconstruction of the boundary value of less regular anisotropic (transversally isotropic) conductivities and their derivatives. Based on the reconstruction formula, we prove Hölder stability, up to isometry, of the inverse problem using a local DtN map.
متن کامل